Elements Of Differentail Geometry by Richard s. Millman, George D. Parker
Local Curve Theory
1.1 (a) show that α(t) = (sin3t cost , sin3t sint, 0)
Sol.
α(t) = (sin3t cost , sin3t sint, 0)
Dα/dt = ( Sin3tsint + (-3costCost) ,sin3t(-cost) + (-3cost)sint , 0)
Dα/dt = ( Sin3tsint - 3costCost , -sin3tcost - 3costsint , 0)
Let suppose t = 0
Dα/dt = ( Sin3(0)sin(0) - 3cos(0)Cos(0) , -sin3(0)cos(0) - 3cos(0)sin(0) , 0)
=(0, -3 , 0 ,0 ) Regular Curve Proved.
(b). Find the equation of the tangent line to α at t = π/3.
Sol.
α(t) = (sin3t cost , sin3t sint, 0)
Dα/dt = Sin3tsint + (-3costCost) ,sin3t(-cost) + (-3cost)sint.
Dα/dt = ( Sin3tsint - 3costCost , -sin3tcost - 3costsint , 0 )
.•. Dα/dt = V
.•. T = V / |v|
t = π/3.
V = ( Sin3(π/3)sin(π/3) - 3cos(π/3) Cos(π/3) , -sin3(π/3)cos(π/3) - 3cos(π/3)sin(π/3) , 0 )
V = ( 0 - 3/2 - 0 - 3√3/2 )
V = - 3 - 3√3 / 2
|v| = √(1)^2+(3)^2
|v| = √10
T = V / |v|
T = - 3 - 3√3 / 2 / √10 Ans.
0 Comments